Nome:

RA:

 $\mathbf{1}^{\underline{a}}$ Questão: Considere a matriz $A \in \mathbb{R}^{2 \times 4}$ dada por

$$A = \left[\begin{array}{cccc} -1 & -2 & -1 & -2 \\ 2 & 4 & 2 & 4 \end{array} \right]$$

- a) Qual o rank de A?
- b) Qual a dimensão do espaço nulo de A?
- c) Obtenha uma base para $\mathcal{R}(A)$ (range de A)
- d) Obtenha uma base para $\mathcal{N}(A)$ (espaço nulo de A)
- $2^{\underline{a}}$ Questão: Determine $\exp(At)$ para

$$A = \left[\begin{array}{cc} -1 & 0 \\ 1 & -1 \end{array} \right]$$

1) (1.0)	
2) (1.0)	
3) (1.0)	
4) (1.0)	
5) (1.0)	
6) (1.0)	
7) (1.0)	
8) (1.0)	

PO)_

 $3^{\underline{a}}$ Questão: Determine a forma de Jordan para a matriz

$$A = \left[\begin{array}{rrr} 1 & 1 & -2 \\ -1 & 3 & -1 \\ 0 & 0 & 2 \end{array} \right]$$

cujos autovalores são $\lambda_1 = \lambda_2 = \lambda_3 = 2$

- $4^{\underline{a}}$ Questão: Mostre que uma matriz $A \in \mathbb{C}^{n \times n}$ hermitiana (isto é, a matriz A é igual à sua conjugada transposta) possui autovalores reais.
- $5^{\underline{a}}$ Questão: Considere o sistema abaixo

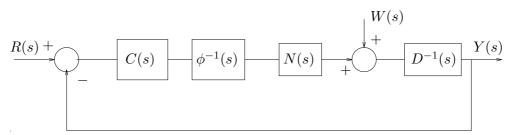
$$\dot{x} = \begin{bmatrix} -1 & 1 & 2 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix} x + \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} u$$

$$y = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix} x$$

- a) O sistema é estável no sentido de Lyapunov? Justifique.
- b) O sistema é assintoticamente estável? Justifique.
- c) O sistema é BIBO-estável? Justifique.
- $6^{\underline{a}}$ Questão: Determine os valores de β para os quais o sistema abaixo não é controlável

$$\dot{x} = \left[\begin{array}{cc} 0 & 1 \\ 3 & 0 \end{array} \right] x + \left[\begin{array}{c} 1 \\ \beta \end{array} \right] u$$

 $7^{\underline{a}}$ Questão: Considere o sistema de controle mostrado na figura abaixo, com R(s)=1/s, W(s)=1/(s-1) e G(s)=(2-s)/(s+10). Projete um compensador próprio C(s), de grau 2, tal que o compensador por modelo interno $\widetilde{C}(s)=C(s)\phi(s)^{-1}$ assegure a estabilidade assintótica, com pólos de malha fechada em $-1\pm j$, -2, -3 e -4 (polinômio $s^5+11s^4+46s^3+94s^2+100s+48$), a rejeição de ruídos w(t) e o rastreamento assintótico de r(t).



8^a Questão: Considere

$$A = \left[\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array} \right] \; ; \quad B = \left[\begin{array}{c} 1 \\ 2 \end{array} \right] \; ; \quad C = \left[\begin{array}{cc} 1 & 0 \\ 1 & 1 \end{array} \right]$$

Encontre, se possível (se não for possível, justifique), o ganho $L \in \mathbb{R}^{2\times 2}$ do estimador de estados de ordem completa (abaixo) que leve o erro $(x - \hat{x})$ assintoticamente para zero alocando os autovalores da matriz dinâmica do erro do observador em -3 e -4.

$$\dot{\hat{x}} = A\hat{x} + Bu + L(y - C\hat{x})$$

9ª Questão: Preencha com V (verdadeiro), F (falso) ou deixe em branco. Atenção: cada resposta errada anula uma certa. Respostas em branco são consideradas como erradas, porém não penalizam.

- b) Um sistema linear controlável e observável BIBO estável é também assintoticamente estável.
- O sistema Ax = b, com a matriz A quadrada, possui sempre solução única.
- A dimensão do espaço nulo de uma matriz depende apenas do número de colunas da matriz e do número de linhas linearmente independentes da matriz.
- O sistema Ax = b tem solução para $b \in \mathbb{R}^m$ qualquer se a matriz $A \in \mathbb{R}^{m \times n}$ tiver rank completo de linhas.
- O sistema Ax = 0 tem solução diferente da trivial (x = 0) se o número de colunas de A for diferente do número de linhas de A.
- A função de transferência de um sistema linear depende apenas das partes controlável e observável do sistema.
- h) Matrizes reais simétricas possuem forma de Jordan diagonal.
- i) Sistemas assintoticamente estáveis são BIBO estáveis.
- Em um sistema SISO com realimentação unitária, a ordem do controlador que permite alocação arbitrária de pólos em malha fechada deve ser necessariamente igual a n-1, sendo n a ordem da planta.