PO) _

Nome:	1) (1.0)	
	2) (1.0)	
RA:	3) (1.0)	
$1^{\underline{a}}$ Questão: Considere a solução geral de um sistema linear da forma	4) (1.0)	
$x = \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix} + \alpha \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix} \qquad , \qquad \alpha \in \Re$	5) (1.0)	
	6) (1.0)	
a) Encontre um sistema $Ax=b,$ com $A\in\Re^{2\times3},$ que admita x acima como solução geral.	7) (1.0)	
	8) (1.0)	
b) Qual é o rank da matriz A ?	9) (1.0)	
c) Qual a dimensão de seu espaço nulo?	10) (1.0)	

 ${f 2}^{\underline{a}}$ Questão: Obtenha uma expressão para A^{-2} em função da matriz inversa de A e da matriz identidade.

$$A = \left[\begin{array}{cc} 0 & 1 \\ -6 & -5 \end{array} \right]$$

 $3^{\underline{a}}$ Questão: Determine o intervalo de valores de α , β e γ para que a matriz M abaixo seja definida positiva

$$M = \left[\begin{array}{cc} \alpha & \beta \\ \beta & \gamma \end{array} \right]$$

 $4^{\underline{a}}$ Questão: Considere a função de transferência de um sistema linear dada por

$$g(s) = \frac{2s^2 + 5}{s^3 + 5s^2 + 2s + k}$$

Determine o intervalo para o parâmetro real k para que o sistema seja BIBO estável.

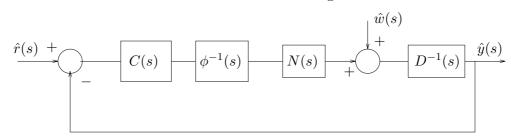
 $\mathbf{5}^{\underline{a}}$ Questão: Mostre que para qualquer matriz $A \in \Re^{n \times n}$

d) Encontre uma base para o range de A.

$$\mathbf{Tr} (A) = \sum_{i=1}^{n} \lambda_i(A) \quad ; \quad \det(A) = \prod_{i=1}^{n} \lambda_i$$

sendo que $\operatorname{Tr}(\cdot)$ é a função traço, dada pela soma dos elementos da diagonal da matriz, det é o determinante e λ_i , $i=1,2,\ldots,n$ são os autovalores de A.

 $6^{\underline{a}}$ Questão: Considere o sistema de controle mostrado na figura abaixo



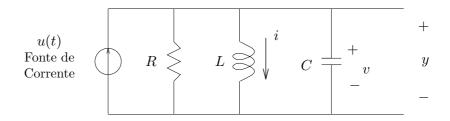
com $\hat{r}(s) = 1/s^2$, $\hat{w}(s) = 1/s$ e $\hat{g}(s) = (10 - s)/(s + 10)$. Projete um compensador próprio C(s), de grau 2, tal que o compensador por modelo interno $\widetilde{C}(s) = C(s)\phi(s)^{-1}$ assegure

- a) Estabilidade assintótica, com pólos de malha fechada em $-2 \pm j2$, -3, -4 e -5;
- b) Rastreamento assintótico de r(t);
- c) Rejeição do distúrbio w(t).

 $7^{\underline{a}}$ Questão: Considere uma matriz $A \in \mathbb{R}^{n \times n}$. Mostre que um autovetor à direita x associado ao autovalor λ é ortogonal ao autovetor à esquerda y associado a um autovalor $\beta \neq \lambda$.

$$Ax = \lambda x$$
 ; $y'A = \beta y'$; $x \perp y \implies \langle x, y \rangle = x'y = 0$

 $8^{\underline{a}}$ Questão: Considere o circuito abaixo.



a) Considere $x_1 \equiv$ corrente no indutor e $x_2 \equiv$ tensão no capacitor. Obtenha as equações dinâmicas do circuito (estado e saída) na forma matricial

$$\dot{x} = Ax + Bu \qquad ; \qquad y = Cx + Du$$

b) Para L=1/6H, $R=0.2\Omega$ e C=1F, obtenha x(t) para entrada u(t)=0 e condição inicial

$$x(0) = \left[\begin{array}{c} 1 \\ 1 \end{array} \right]$$

c) Obtenha a função de transferência $G(s) = \frac{Y(s)}{U(s)}$. ${f 9}^{\underline a}$ Questão: Determine a representação na Forma de Jordan J para a matriz A com polinômio característico $\Delta(\lambda)$ abaixo

$$A = \begin{bmatrix} 8 & -6 & 3 \\ 1 & 3 & 1 \\ -1 & 2 & 4 \end{bmatrix} \quad ; \quad \Delta(\lambda) = (\lambda - 5)^3$$

 $10^{\underline{a}}$ Questão: Considere a base B para polinômios de grau menor ou igual a 3 formada pelos vetores $\{1, t, t^2, t^3\}$.

- a) Encontre a representação β do vetor $x(t) = 2t^3 3t^2 + 2t + 1$ na base B.
- b) Encontre a matriz P que leva uma representação β de um vetor x na base B para $\bar{\beta}$ na base $\bar{B}=\{t^3-1,t^2-1,t-1,1\}.$
- c) Encontre a representação na base B da transformação linear $T \in \mathbb{R}^{4\times 4}$ que leva um polinômio pertencente ao espaço para um outro polinômio do mesmo espaço igual à derivada do primeiro, ou seja, se p(t) é um polinômio, então

$$T[p(t)] = \frac{d}{dt} p(t)$$