Segunda Parte

Nome:																				
nome:			 																	

RA:

 $2^{\underline{a}}$ Questão: Considere a matriz $A \in \mathbb{R}^{2\times 4}$ dada por

$$A = \left[\begin{array}{cccc} 1 & 2 & -1 & 0 \\ 2 & 4 & -2 & 0 \end{array} \right]$$

- a) Qual o rank de A?
- b) Qual a dimensão do espaço nulo de A?
- c) Obtenha uma base para $\mathcal{R}(A)$ (range de A)
- d) Obtenha uma base para $\mathcal{N}(A)$ (espaço nulo de A)

1) (1.0)	
2) (1.0)	
3) (1.0)	
4) (1.0)	
5) (1.0)	
6) (1.0)	
7) (1.0)	
8) (1.0)	
9) (1.0)	
10) (1.0)	

- **3**^a **Questão:** Considere a base B para polinômios de grau menor ou igual a 3 formada pelos vetores $\{1, s-1, s^2-2, s^3-s\}$.
- a) Encontre a representação β do vetor $x(s) = 5s^3 + 2s^2 2s + 1$ na base B.
- b) Encontre a matriz P que leva a representação β de um vetor x(s) na base B para $\bar{\beta}$ na base $\bar{B} = \{1, s, s^2, s^3\}$.
- $4^{\underline{a}}$ Questão: No sistema de equações abaixo, α é um parâmetro real. Determine, se houver, o(s) valor(es) de α para o(s) qual(is) o sistema tem solução.

$$\begin{cases} 2x + y = 5 \\ -x + y = 1 \\ 3x + 2y = \alpha \end{cases}$$

 $\mathbf{5}^{\underline{a}}$ Questão: Considere a matriz $A \in \mathbb{R}^{2 \times 2}$ dada por

$$A = \left[\begin{array}{cc} 3 & 2 \\ -1 & 0 \end{array} \right]$$

Obtenha a representação de A na forma de Jordan, isto é, \hat{A} e Q tais que $\hat{A} = Q^{-1}AQ$.

6^{<u>a</u>} **Questão:** Compute $f(A) = \exp(-At)$ para

$$A = \left[\begin{array}{cc} 1 & 10 \\ 0 & 1 \end{array} \right]$$

 $7^{\underline{a}}$ Questão: Uma matriz $A \in \mathbb{R}^{2 \times 2}$ e sua inversa A^{-1} se relacionam da seguinte forma

$$A^{-1} - A = -3A^{-1}$$

Assumindo por hipótese que A tem autovalores distintos, qual é o polinômio característico de A?

 $8^{\underline{a}}$ Questão: Determine os valores de β para que a matriz abaixo seja definida positiva

$$M = \left[\begin{array}{cc} 5 & \beta \\ \beta & 1 \end{array} \right]$$

 $9^{\underline{a}}$ Questão: Considere os vetores v_1 e v_2 dados por

$$v_1 = \begin{bmatrix} 2 \\ 0 \end{bmatrix}$$
 ; $v_2 = \begin{bmatrix} 2 \\ 2 \end{bmatrix}$

- a) Os vetores formam uma base para o \mathbb{R}^2 ? Justifique.
- b) Obtenha, a partir de $V = \begin{bmatrix} v_1 & v_2 \end{bmatrix}$, uma base ortonormal (se for possível). Represente graficamente.

10^a Questão: Considere uma matriz $A \in \mathbb{R}^{n \times n}$ simétrica (isto é, A = A'). Mostre que os autovalores associados a autovetores à esquerda de A, isto é, λ tais que $y'A = \lambda y'$, $y \neq 0$, são reais.