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Resolucdo da Equacao de Estado — Introducao

@ Sistema Linear Invariante no Tempo

v =Av+ bx
y =cv+dx

VGR”, XGR, yER, AeRan7 bERnXl, CeRlxn

@ Dados x(t) (entrada) e v(0) € R™? (condi¢do inicial):

= determine: v(t) (e y(t)=cv(t)+ dx(t))
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Equacao Homogénea

@ Equacio diferencial (vetorial) homogénea de primeira ordem

v=Av, v(0)eR"

@ Pode ser transformado em equacgdes diferenciais de ordem superior e
resolvido;

@ Pode ser resolvido por Laplace (e decomposicdo em fracdes parciais).

A solugao é a combinag¢ao linear dos modos préprios do sistema.
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Equacao Homogénea

@ Laplace

sV(s)—v(0)=AV(s), sV(s)—AV(s)=v(0) = V(s)=(sI—A)"1v(0)

(sl —A)? Adj(sl — A) = (Co(sl — A))’

1
 det(sl — A) det(s/ — A)

@ Modos préprios: dependem das raizes de det(s/ — A) =0
Av=Av = (A—Al)v=0, veC™! { A € C autovalor

v # 0 autovetor
A(A)=det(A—Al)=0 (Equagdo Caracteristica)
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Solugdo da Equagdo Homogénea — exp(At)

@ Considere a equacdo homogénea

v=Av , v(0)=yweR"

@ Supondo que a solucdo v(t) possa ser escrita em série de poténcias,
tem-se

oo oo
V(t): Z\/ktk = v= Zkvktkfl , Vo=Ww
k=0 k=0

sendo v, € R" os vetores da expansdo em série (a determinar).
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@ Substituindo na equagdo e igualando os termos da série de poténcia,
tem-se

1 1
Vi=AVvy, 2v =Av; = V= §A2vo L 3v3=Av, = v3= §A3vo

1
kv =Avi1 = ve=—AXy,

k!
€, portanto,
+oo Ak P 0
vit)=| X 5t v, A=
= k!

@ Por analogia com a série de Taylor da fun¢do exp(At)

+o0 xk +oo Ak
exp(At) =) Ftk = exp(At) =) Ftk eR™"
k=0 K k=0 K

@ Assim, a solucdo da equacdo homogénea é dada por

v(t) = exp(At)vp
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Propriedades de exp(At)

@ Unicidade da solugdo para t >0

exp(At)u(t) = £ 1{(s— A1}

pois a solugdo v(t), para t >0, é dada por
v(t) =exp(At)vg = .2 (sl — A)1}v

para qualquer vg.
@ Derivada

d
p exp(At) = Aexp(At) = exp(At)A
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Propriedades de exp(At)

@ Computoem t=1t; +tp

exp (A(t1 + t2)) = exp(Aty) exp(Atp) = exp(Aty) exp(At1)
@ A matriz exp(At) é ndo singular para qualquer matriz A e para todo t,
com inversa dada por
(exp(At)) ™! = exp(—At)
pois, fazendo-se t; =t e tp = —t, pela propriedade anterior tem-se

exp(At) exp(—At) = exp(A0) = |
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Propriedades de exp(At)

@ Computo de exp ((A+ B)t)

exp(At)exp(Bt) = exp(Bt)exp(At) = exp (A+ B)t) <= AB=BA

pois

(A+B)?=(A+B)A+B)=A>+AB+BA+B*=
=A242AB+B>=A%2+2BA+B?2 <— AB=BA

@ A expansdo binomial de Newton aplica-se a matrizes apenas quando o
produto das matrizes comuta, o que normalmente n3o ocorre. ExcecOes

para AB = BA, por exemplo, sdo dadas por B = exp(At) ou quando Ae B
sao diagonais.
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Teorema de Cayley-Hamilton

Toda matriz A satisfaz sua equagao caracteristica, isto é,

det(Al—A)=A(X)=0 = A(A)=0

v

Funcdo de matriz quadrada & Briot-Ruffini

Seja f(A) uma fun¢do polinomial e A(A) um polindmio de grau n em A.
Entao,

f(2) = g)AR)+ T pitt
k=0

Para A autovalor de A, A(A) =0 e, pelo Teorema de Cayley-Hamilton,

AA)=0 = f(A):"fpkAk
k=0

N

@ Note que, para matrizes bloco-diagonais com submatrizes quadradas,

A=diag(A1,...,A) = f(A) =diag(f(A1),....f(A))
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Calculo de exp(At)

@ Para A€ R™" com equagio caracteristica A(A) =0,

n—1
exp(AL) = q(A, ) A(A) + r(A,t) = r(A,t) = ¥ pi(t)A*
k=0

Para uma discussdo sobre aspectos numéricos do calculo de exp(At),
recomenda-se

o C. Moler and C. Van Loan. Nineteen dubious ways to compute the
exponential of a matrix. SIAM Review, 20(4):801-836, October 1978.

o C. Moler and C. Van Loan. Nineteen dubious ways to compute the
exponential of a matrix, twenty-five years later. SIAM Review,
45(1):3-49, March 2003.
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Transformacao de Similaridade

@ Considere a equacdo de estado
v=Av , v(0)=yweR"
e a mudanga de varidveis (T n3o singular)
v=T0 = Ti=AT0 = 0=A0; A=T AT, A=TAT!
@ Transformacgdes de similaridade preservam os autovalores, pois
det(A—Al) =det(T AT —A T 1T) =det(A—Al)
e também preservam a fun¢ao de transferéncia
H(s)=cT sl — TAT ) ' Tb+d

=T HsTT - TAT ) ' Tb+d

— T Y T(sI—A)T ) b+d

=c(sl—A)"tbh+d
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@ Escolhas apropriadas da transformacdo T podem levar a representacoes
A diagonal ou triangular, dependendo da estrutura de autovalores e
autovetores da matriz A.

Funcdo de matriz similar

A=TAT ! = fA)=TFAT?

Pois, pelo Teorema de Cayley-Hamilton,

n—1
Z prAK = Z Pk (TAT ) (TAT Y =T Y pA T 1=TFAT
k=0

k vezes
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Matrizes Diagonalizdveis

@ Se uma matriz A € R™" possui n autovetores linearmente

independentes, a transformacdo @ construida com os autovetores
(colunas) resulta em

AQ=QA = A=QAQ=A=diagA,...,A,)

sendo A;, i =1,...,n os autovalores de A, pois
A4 0 - 0
0 A - 0
Al @ - al=[am @ - al|. . . .
0 0 - A,

Note que os autovalores ndo precisam ser distintos.

Pedro L. D. Peres (FEEC/UNICAMP) EA616A - P-Sol-Eq-Est



@ Os autovetores associados a autovalores distintos de uma matriz A s3o
linearmente independentes. Portanto, a matriz Q@ composta de autovetores
diagonaliza a matriz pela transformac¢do de similaridade QLAQ.

@ As matrizes

[g _oﬂ cR>? [056113 oz—i(—)jﬂ] c C2%2

s3o similares, pois
det <7L|— [O‘_OJB GEJBD — det (M— [g :ﬂ) = (A — )’ +p?

;o)

Forma modal: [
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@ Considere a matriz na forma modal

o — .
M = [ﬁ oﬂ’ autovalores: A1 = o+ jB

Utilizando Briot-Ruffini e A(A) nos autovalores de M tem-se

exp ((+jB)t) = po+pi(a+jB), exp((a—jB)t)=po+pi(a—jB),

que, somando e subtraindo, produzem
po+ p1o = exp(at)cos(Bt), pi1f =exp(at)sen(Bt)
Por Cayley-Hamilton, tem-se

o) -+ st [T
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Transformacoes de Similaridade e Formas de Jordan

Propriedade

“Qualquer” matriz quadrada A € R™" admite uma transformacdo de
similaridade

AQ=QJ = J=Q7'AQ

que leva a uma (“Unica") matriz J € R™*" formada por blocos de Jordan.

@ Blocos de Jordan sdo matrizes quadradas com o mesmo autovalor ¢ na
diagonal principal e uma subdiagonal superior de uns:

o |5 4

1 0
c 1],
0 o

o O Q

oo o9
oo Qg+
oQ ~r o
Q — O o

Pedro L. D. Peres (FEEC/UNICAMP) EA616A - P-Sol-Eq-Est



Forma de Jordan — Mesmo autovalor

@ Considere uma matriz quadrada A € R™" com autovalor o de
multiplicidade algébrica (MA) igual a n, isto é,

det(Al — A) = (A — o)

@ O nimero de blocos na representacdo de A na forma de Jordan é igual a
multiplicidade geométrica (MG) do autovalor o, ou seja, é igual ao
nimero de autovetores linearmente independentes associados a G, que por
sua vez é igual a dimens3o do espac¢o nulo de

(A—Alv=0, 1<MG<MA
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Espago nulo e rank (posto) de uma matriz

@ Para M € R™*‘, a dimens3o do espaco nulo de Mv =0 é igual ao
nimero ¢ de colunas de M menos o rank (ou posto) de M.

@ O rank p de uma matriz M € R™*! é igual ao niimero de linhas
linearmente independentes da matriz, que por sua vez é igual ao niimero
de colunas linearmente independentes da matriz,

rank(M) = p < min{m, ¢}
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Determinacao da Forma de Jordan

@ As formas de Jordan possiveis para uma matriz A € R?*? com o mesmo
autovalor o sao

[G O], se MG=2 [G 1], se MG=1
0 o 0 o

@ As formas de Jordan possiveis para uma matriz A € R3*3 com o mesmo
autovalor o sao

1 0 1 0
c 0| (MG=2), c 1| (MG=1)
0 o 0 o

o o 9

0 0
c 0| (MG=3),
0 o

o o Q
o o Q
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Determinacao da Transformacao de Jordan

@ A transformacio de similaridade @ pode ser obtida resolvendo-se o
sistema de equagbes AQ = QJ

@ Por exemplo, para A € R2%2 ¢ MG=1, tem-se

Alar @] =|n @] [g clr]

Note que g1 é autovetor, pois
Aqlchl, (A—Gl)qlzo

mas g nao é
Ap=q+0oq, (A-cl)p=q

g> é chamado de autovetor generalizado de grau 2, pois (A—c/)?>go =0
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Determinacao da Transformacao de Jordan

@ Por exemplo, para A € R3%3 ¢ MG=1, tem-se

Algr @ @l=|a @ g

o o Q
o Q
Q — O

(A—Gl)qlzo, (A—Gl)qzqu, (A—G/)q3:q2

(A-0c1)2g =0, (A-cl)qgz=0

g1 € o Unico autovetor (pois MG=1)

g2 e g3 sdo autovetores generalizados (respectivamente de grau 2 e 3)
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Determinacao da Transformacao de Jordan

@ Para Ac R¥3 e MG=2, tem-se J = diag{J(0), J1(0)}

1
c
0

Alag @2 @)=[a ¢ g3

o o Q
Q o o

(A—Gl)qlzo, (A—Gl)q3:0

(A-ol@=q, (A-0cl)’q@=0

g1 € g3 sdo autovetores (pois MG=2)
g> é um autovetor generalizado de grau 2 associado a q;

J =diag{Ji(0), (o)} é considerada a mesma forma de Jordan
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Formas de Jordan

o Casos maiores requerem tratamento mais complexo para
determinacdo da forma de Jordan;

@ Os procedimentos para a determinacdo da forma de Jordan sdo
numericamente instaveis (exceto para matrizes cujos elementos sdo
nimeros inteiros ou razdo de inteiros pequenos);

e No Matlab, [Q,J]=jordan(A) fornece Q e J tais que AQ = QJ
(calculo simbdlico);

@ Formas de Jordan s3o uteis para construir sistemas lineares
homogéneos que produzem como saida uma determinada func3o.
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Funcao de bloco de Jordan

@ Considere um bloco de Jordan de ordem k com autovalor 6 e uma
funcdo f(A) diferencidvel k —1 vezes. Ent3o,

f(A) f(A) fA)/2r - fDQ)/(k—1)!
0 f(A) f@A) - FEDQ)/(k—2)!
Fld) = : : : :
o 0 0 . F(2) L
Por exemplo,
-2 1 0 1t t2)2
exp(JS(—2)t) = exp( { 0 -2 1 ] t) = exp(—2t) [O 1t ]
0o 0 -2 0 0 1
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Bloco Modal de Jordan

@ Considere as matrizes

o —f 1 0
oa —B M B o 0 1
M:[ﬁ a] [o I\/I][O 0 « B}
0 0 B «
Entao,
M _ |exp(Mt) texp(Mt)|
exP([o M] t)‘[ "o expp(Mt)]_
cosggtg —sergl(sﬁ)t) tcosglﬁ;t; —tserzéﬁ;‘)
sen(Bt) cos(Bt) tsen(Bt) tcos(Bt
= exp(at) 0 0 cos(Bft) —sen(Bt)
0 0 sen(Bt)  cos(Pt)
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@ Para escolher matrizes A, ¢ e vy tais que o sistema
v=Av , y=cv , v(0)=w

produza a saida y(t) = 3t?exp(—2t), pode-se utilizar a forma de Jordan.
Necessariamente, a matriz A deve possuir o autovalor —2 com
multiplicidade algébrica 3 e multiplicidade geométrica 1, ou seja, a forma
de Jordan deve conter o bloco

-2 1 0 1t t?)2
=0 -2 1 = exp(Jzst)=exp(—2t) [0 1 ¢t
0 0 -2 00 1

Portanto, uma possivel solucido é dada por

/

A=J3, vw=[0 0 1] = v(t)=exp(-2t)[t?/2 t 1]

= c= [6 0 0] Note que outras matrizes, inclusive de dimensdes
maiores, poderiam ser usadas para gerar o mesmo sinal y(t). A opg¢do
apresentada é a de menor dimensao.
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Solucdo da equacdo nao homogénea

@ Considere as equacgdes de estado e de saida do sistema SISO
v=Av+bx , v(0)=vy , y=cv+dx
Aplicando a transformada de Laplace, tem-se
sV(s)—vw=AV(s)+bX(s) , Y(s)=cV(s)+dX(s)
sendo V(s) = Z{v(t)}, X(s) = Z{x(t)} e Y(s) = Z{y(t)}. Portanto,
Y(s)=c(sl—A) v+ (c(sl — A)"tb+d) X(s)

A fungdo de transferéncia é dada por (vp = 0)

H(s) = % =c(sl—A)b+d

Pedro L. D. Peres (FEEC/UNICAMP) EA616A - P-Sol-Eq-Est



Sistema homogéneo aumentado

@ Considere novamente o sistema SISO cuja equacdo de estado é dada por
v=Av+bx , v(0)=v , y=cv+dx
sendo x(t) solu¢do da equagdo de estado homogénea
v=AV, v(0)=v , x=¢cv

A solugdo v(t) do sistema original ndo homogéneo pode ser obtida a partir
da solugdo do sistema homogéneo dado por

v =Av | V(O)Z[YO] , y=¢v

com
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