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Resolução da Equação de Estado — Introdução

Sistema Linear Invariante no Tempo

v̇ = Av +bx

y = cv +dx

v ∈R
n, x ∈ R, y ∈R, A ∈ R

n×n, b ∈ R
n×1, c ∈ R

1×n

Dados x(t) (entrada) e v(0) ∈ R
n×1 (condição inicial):

⇒ determine: v(t) (e y(t) = cv(t)+dx(t))
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Equação Homogênea

Equação diferencial (vetorial) homogênea de primeira ordem

v̇ = Av , v(0) ∈R
n

Pode ser transformado em equações diferenciais de ordem superior e
resolvido;

Pode ser resolvido por Laplace (e decomposição em frações parciais).

SLIT

A solução é a combinação linear dos modos próprios do sistema.
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Equação Homogênea

Laplace

sV (s)−v(0)=AV (s), sV (s)−AV (s)= v(0) ⇒ V (s)= (sI−A)−1v(0)

(sI −A)−1 =
1

det(sI −A)
Adj(sI −A) =

1

det(sI −A)

(
Co(sI −A)

)′

Modos próprios: dependem das ráızes de det(sI −A) = 0

Av = λv ⇒ (A−λ I )v = 0, v ∈ C
n×1

{
λ ∈ C autovalor
v 6= 0 autovetor

∆(λ ) = det(A−λ I ) = 0 (Equação Caracteŕıstica)
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Solução da Equação Homogênea — exp(At)

Considere a equação homogênea

v̇ = Av , v(0) = v0 ∈ R
n

Supondo que a solução v(t) possa ser escrita em série de potências,
tem-se

v(t) =
+∞

∑
k=0

νk t
k ⇒ v̇ =

+∞

∑
k=0

kνkt
k−1 , ν0 = v0

sendo νk ∈ R
n os vetores da expansão em série (a determinar).
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Substituindo na equação e igualando os termos da série de potência,
tem-se

ν1 = Aν0 , 2ν2 = Aν1 ⇒ ν2 =
1

2
A2ν0 , 3ν3 = Aν2 ⇒ ν3 =

1

3!
A3ν0

kνk = Aνk−1 ⇒ νk =
1

k!
Akν0

e, portanto,

v(t) =

(
+∞

∑
k=0

Ak

k!
tk

)

v0, A0 = I

Por analogia com a série de Taylor da função exp(λ t)

exp(λ t) =
+∞

∑
k=0

λ k

k!
tk ⇒ exp(At) =

+∞

∑
k=0

Ak

k!
tk ∈R

n×n

Assim, a solução da equação homogênea é dada por

v(t) = exp(At)v0
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Propriedades de exp(At)

Unicidade da solução para t ≥ 0

exp(At)u(t) = L
−1{(sI−A)−1}

pois a solução v(t), para t ≥ 0, é dada por

v(t) = exp(At)v0 = L
−1{(sI−A)−1}v0

para qualquer v0.

Derivada

d

dt
exp(At) = Aexp(At) = exp(At)A
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Propriedades de exp(At)

Cômputo em t = t1+ t2

exp
(
A(t1+ t2)

)
= exp(At1)exp(At2) = exp(At2)exp(At1)

A matriz exp(At) é não singular para qualquer matriz A e para todo t,
com inversa dada por

(exp(At))−1 = exp(−At)

pois, fazendo-se t1 = t e t2 =−t, pela propriedade anterior tem-se

exp(At)exp(−At) = exp(A0) = I
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Propriedades de exp(At)

Cômputo de exp
(
(A+B)t

)

exp(At)exp(Bt) = exp(Bt)exp(At) = exp
(
(A+B)t

)
⇐⇒ AB = BA

pois

(A+B)2 = (A+B)(A+B) = A2+AB+BA+B2 =

= A2+2AB+B2 = A2+2BA+B2 ⇐⇒ AB = BA

A expansão binomial de Newton aplica-se a matrizes apenas quando o
produto das matrizes comuta, o que normalmente não ocorre. Exceções
para AB = BA, por exemplo, são dadas por B = exp(At) ou quando A e B

são diagonais.
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Teorema de Cayley-Hamilton

Toda matriz A satisfaz sua equação caracteŕıstica, isto é,

det(λ I−A) = ∆(λ ) = 0 ⇒ ∆(A) = 0

Função de matriz quadrada & Briot-Ruffini

Seja f (λ ) uma função polinomial e ∆(λ ) um polinômio de grau n em λ .
Então,

f (λ ) = q(λ )∆(λ )+
n−1

∑
k=0

ρkλ k

Para λ autovalor de A, ∆(λ ) = 0 e, pelo Teorema de Cayley-Hamilton,

∆(A) = 0 ⇒ f (A) =
n−1

∑
k=0

ρkA
k

Note que, para matrizes bloco-diagonais com submatrizes quadradas,

A= diag(A1, . . . ,Aℓ) ⇒ f (A) = diag(f (A1), . . . , f (Aℓ))
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Cálculo de exp(At)

Para A ∈ R
n×n com equação caracteŕıstica ∆(A) = 0,

exp(At) = q(A,t)∆(A)+ r(A,t) = r(A,t) =
n−1

∑
k=0

ρk(t)A
k

Para uma discussão sobre aspectos numéricos do cálculo de exp(At),
recomenda-se

C. Moler and C. Van Loan. Nineteen dubious ways to compute the
exponential of a matrix. SIAM Review, 20(4):801–836, October 1978.

C. Moler and C. Van Loan. Nineteen dubious ways to compute the
exponential of a matrix, twenty-five years later. SIAM Review,
45(1):3–49, March 2003.
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Transformação de Similaridade

Considere a equação de estado

v̇ = Av , v(0) = v0 ∈ R
n

e a mudança de variáveis (T não singular)

v = Tv̂ ⇒ T ˙̂v = ATv̂ ⇒ ˙̂v = Âv̂ ; Â= T−1AT , A= TÂT−1

Transformações de similaridade preservam os autovalores, pois

det(Â−λ I) = det(T−1AT −λT−1T ) = det(A−λ I)

e também preservam a função de transferência

H(s) = cT−1(sI −TAT−1)−1Tb+d

= cT−1(sTT−1−TAT−1)−1Tb+d

= cT−1
(
T (sI −A)T−1

)−1
b+d

= c(sI −A)−1b+d
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Escolhas apropriadas da transformação T podem levar a representações
Â diagonal ou triangular, dependendo da estrutura de autovalores e
autovetores da matriz A.

Função de matriz similar

A= TÂT−1 ⇒ f (A) = Tf (Â)T−1

Pois, pelo Teorema de Cayley-Hamilton,

f (A)=
n−1

∑
k=0

ρkA
k =

n−1

∑
k=0

ρk (TÂT−1) · · · (TÂT−1)
︸ ︷︷ ︸

k vezes

=T
n−1

∑
k=0

ρk Â
kT−1=Tf (Â)T−
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Matrizes Diagonalizáveis

Se uma matriz A ∈R
n×n possui n autovetores linearmente

independentes, a transformação Q constrúıda com os autovetores
(colunas) resulta em

AQ = QÂ ⇒ Â=Q−1AQ = Λ = diag(λ1, . . . ,λn)

sendo λi , i = 1, . . . ,n os autovalores de A, pois

A
[
q1 q2 · · · qn

]
=
[
q1 q2 · · · qn

]








λ1 0 · · · 0
0 λ2 · · · 0
...

...
. . .

...
0 0 · · · λn








Note que os autovalores não precisam ser distintos.
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Os autovetores associados a autovalores distintos de uma matriz A são
linearmente independentes. Portanto, a matriz Q composta de autovetores
diagonaliza a matriz pela transformação de similaridade Q−1AQ.

As matrizes
[

α −β

β α

]

∈ R
2×2 ,

[
α − jβ 0

0 α + jβ

]

∈C
2×2

são similares, pois

det

(

λ I−

[
α − jβ 0

0 α + jβ

])

= det

(

λ I−

[
α −β

β α

])

= (λ −α)2+β 2

Forma modal:

[
α −β

β α

]
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Considere a matriz na forma modal

M =

[
α −β

β α

]

, autovalores: λ1,2 = α ± jβ

Utilizando Briot-Ruffini e ∆(λ ) nos autovalores de M tem-se

exp
(
(α + jβ )t

)
= ρ0+ρ1(α + jβ ), exp

(
(α − jβ )t

)
= ρ0+ρ1(α − jβ ),

que, somando e subtraindo, produzem

ρ0+ρ1α = exp(αt)cos(β t), ρ1β = exp(αt)sen(β t)

Por Cayley-Hamilton, tem-se

exp(Mt) = ρ0I+ρ1M = exp(αt)

[
cos(β t) −sen(β t)
sen(β t) cos(β t)

]
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Transformações de Similaridade e Formas de Jordan

Propriedade

“Qualquer”matriz quadrada A ∈R
n×n admite uma transformação de

similaridade
AQ = QJ ⇒ J = Q−1AQ

que leva a uma (“única”) matriz J ∈ R
n×n formada por blocos de Jordan.

Blocos de Jordan são matrizes quadradas com o mesmo autovalor σ na
diagonal principal e uma subdiagonal superior de uns:

[
σ
]
,

[
σ 1
0 σ

]

,





σ 1 0
0 σ 1
0 0 σ



 ,







σ 1 0 0
0 σ 1 0
0 0 σ 1
0 0 0 σ






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Forma de Jordan — Mesmo autovalor

Considere uma matriz quadrada A ∈ R
n×n com autovalor σ de

multiplicidade algébrica (MA) igual a n, isto é,

det(λ I −A) = (λ −σ)n

O número de blocos na representação de A na forma de Jordan é igual à
multiplicidade geométrica (MG) do autovalor σ , ou seja, é igual ao
número de autovetores linearmente independentes associados a σ , que por
sua vez é igual à dimensão do espaço nulo de

(A−λ I )v = 0, 1≤MG≤MA
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Espaço nulo e rank (posto) de uma matriz

Para M ∈ R
m×ℓ, a dimensão do espaço nulo de Mv = 0 é igual ao

número ℓ de colunas de M menos o rank (ou posto) de M.

O rank ρ de uma matriz M ∈ R
m×ℓ é igual ao número de linhas

linearmente independentes da matriz, que por sua vez é igual ao número
de colunas linearmente independentes da matriz,

rank(M) = ρ ≤min{m, ℓ}
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Determinação da Forma de Jordan

As formas de Jordan posśıveis para uma matriz A ∈ R
2×2 com o mesmo

autovalor σ são
[

σ 0
0 σ

]

, se MG=2

[
σ 1
0 σ

]

, se MG=1

As formas de Jordan posśıveis para uma matriz A ∈ R
3×3 com o mesmo

autovalor σ são




σ 0 0
0 σ 0
0 0 σ



(MG=3),





σ 1 0
0 σ 0
0 0 σ



(MG=2),





σ 1 0
0 σ 1
0 0 σ



(MG=1)
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Determinação da Transformação de Jordan

A transformação de similaridade Q pode ser obtida resolvendo-se o
sistema de equações AQ = QJ

Por exemplo, para A ∈R
2×2 e MG=1, tem-se

A
[
q1 q2

]
=
[
q1 q2

]
[

σ 1
0 σ

]

Note que q1 é autovetor, pois

Aq1 = σq1, (A−σ I )q1 = 0

mas q2 não é
Aq2 = q1+σq2, (A−σ I )q2 = q1

q2 é chamado de autovetor generalizado de grau 2, pois (A−σ I )2q2 = 0
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Determinação da Transformação de Jordan

Por exemplo, para A ∈R
3×3 e MG=1, tem-se

A
[
q1 q2 q3

]
=
[
q1 q2 q3

]





σ 1 0
0 σ 1
0 0 σ





(A−σ I )q1 = 0, (A−σ I )q2 = q1, (A−σ I )q3 = q2

(A−σ I )2q2 = 0, (A−σ I )3q3 = 0

q1 é o único autovetor (pois MG=1)

q2 e q3 são autovetores generalizados (respectivamente de grau 2 e 3)
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Determinação da Transformação de Jordan

Para A ∈ R
3×3 e MG=2, tem-se J = diag{J2(σ),J1(σ)}

A
[
q1 q2 q3

]
=
[
q1 q2 q3

]





σ 1 0
0 σ 0
0 0 σ





(A−σ I )q1 = 0, (A−σ I )q3 = 0

(A−σ I )q2 = q1, (A−σ I )2q2 = 0

q1 e q3 são autovetores (pois MG=2)

q2 é um autovetor generalizado de grau 2 associado a q1

J = diag{J1(σ),J2(σ)} é considerada a mesma forma de Jordan
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Formas de Jordan

Casos maiores requerem tratamento mais complexo para
determinação da forma de Jordan;

Os procedimentos para a determinação da forma de Jordan são
numericamente instáveis (exceto para matrizes cujos elementos são
números inteiros ou razão de inteiros pequenos);

No Matlab, [Q,J]=jordan(A) fornece Q e J tais que AQ = QJ

(cálculo simbólico);

Formas de Jordan são úteis para construir sistemas lineares
homogêneos que produzem como sáıda uma determinada função.
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Função de bloco de Jordan

Considere um bloco de Jordan de ordem k com autovalor σ e uma
função f (λ ) diferenciável k−1 vezes. Então,

f (Jk) =








f (λ ) ḟ (λ ) f̈ (λ )/2! · · · f (k−1)(λ )/(k −1)!

0 f (λ ) ḟ (λ ) · · · f (k−2)(λ )/(k −2)!
...

...
...

. . .
...

0 0 0 · · · f (λ )








λ=σ

Por exemplo,

exp(J3(−2)t) = exp
(





−2 1 0
0 −2 1
0 0 −2



t
)

= exp(−2t)





1 t t2/2
0 1 t

0 0 1




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Bloco Modal de Jordan

Considere as matrizes

M =

[
α −β

β α

]

,

[
M I
0 M

]

=







α −β 1 0
β α 0 1
0 0 α −β

0 0 β α







Então,

exp
([

M I
0 M

]

t
)

=

[
exp(Mt) t exp(Mt)

0 exp(Mt)

]

=

= exp(αt)







cos(β t) −sen(β t) t cos(β t) −t sen(β t)
sen(β t) cos(β t) t sen(β t) t cos(β t)

0 0 cos(β t) −sen(β t)
0 0 sen(β t) cos(β t)






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Para escolher matrizes A, c e v0 tais que o sistema

v̇ = Av , y = cv , v(0) = v0

produza a sáıda y(t) = 3t2 exp(−2t), pode-se utilizar a forma de Jordan.
Necessariamente, a matriz A deve possuir o autovalor −2 com
multiplicidade algébrica 3 e multiplicidade geométrica 1, ou seja, a forma
de Jordan deve conter o bloco

J3 =





−2 1 0
0 −2 1
0 0 −2



 ⇒ exp(J3t) = exp(−2t)





1 t t2/2
0 1 t

0 0 1





Portanto, uma posśıvel solução é dada por

A= J3 , v0 =
[
0 0 1

]′
⇒ v(t) = exp(−2t)

[
t2/2 t 1

]′

⇒ c =
[
6 0 0

]
Note que outras matrizes, inclusive de dimensões

maiores, poderiam ser usadas para gerar o mesmo sinal y(t). A opção
apresentada é a de menor dimensão.
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Solução da equação não homogênea

Considere as equações de estado e de sáıda do sistema SISO

v̇ = Av +bx , v(0) = v0 , y = cv +dx

Aplicando a transformada de Laplace, tem-se

sV (s)− v0 = AV (s)+bX (s) , Y (s) = cV (s)+dX (s)

sendo V (s) = L {v(t)}, X (s) = L {x(t)} e Y (s) = L {y(t)}. Portanto,

Y (s) = c(sI−A)−1v0+
(
c(sI−A)−1b+d

)
X (s)

A função de transferência é dada por (v0 = 0)

H(s) =
Y (s)

X (s)
= c(sI−A)−1b+d
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Sistema homogêneo aumentado

Considere novamente o sistema SISO cuja equação de estado é dada por

v̇ = Av +bx , v(0) = v0 , y = cv +dx

sendo x(t) solução da equação de estado homogênea

˙̄v = Āv̄ , v̄(0) = v̄0 , x = c̄ v̄

A solução v(t) do sistema original não homogêneo pode ser obtida a partir
da solução do sistema homogêneo dado por

˙̃v = Ãṽ , ṽ(0) =

[
v0
v̄0

]

, y = c̃ ṽ

com
[
v̇
˙̄v

]

=

[
A bc̄

0 Ā

][
v

v̄

]

,

[
v(0)
v̄(0)

]

=

[
v0
v̄0

]

, y =
[
c dc̄

]
[
v

v̄

]
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