
On Robustly Invariant Polyhedral Sets and Bilinear
Programming for Designing Constrained Controllers

Eugênio B. Castelan

EAS and PósAutomação / UFSC, Florianópolis, Brazil

Professor Visitante UNICAMP

FAPESP Processo 24/10229-8

Outubro 2024 1 / 40



Summary

1 Introduction

2 Set-theoretic output feedback control: A bilinear programming approach

3 Output feedback design for LPV systems subject to disturbances and control
rate constraints

4 Conclusion

2 / 40



Summary

1 Introduction

2 Set-Theoretic Control

3 Constrained LPV Systems under control rate limits

4 Concluding Remarks

3 / 40



Introduction

Considering physical and safety limits that occur in control systems is the
primary concern of the Constrained Control research field

Set- invariance and contractivity are fundamental concepts used to guarantee
constraints fulfillment and determine regions of local stability [Tarbouriech
et al., 2011, Blanchini and Miani, 2015]

In practice, state and control constraints and exogenous disturbances are
mostly bounded in amplitude and can be represented by polyhedral sets.
Furthermore, Output Feedback (OF) control laws are often required in
real-world applications

Objective: To show that Bilinear Programming is an e!ective

optimization tool to design Output Feedback controllers for

constrained LTI and LPV systems using Polyhedral Set-Invariance
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Set-invariance properties relate convex (C-)sets (ellipsoidal, polyhedral, or
composite) to a dynamical system (linear, nonlinear, LPV, or Fuzzy T-S)
[Tarbouriech et al., 2011, Blanchini and Miani, 2015]

For systems subject to persistent
disturbances, the property of Robust
Positive Invariance (RPI) ensures that
any trajectory originating from a set
within the state space will stay within
that set. Additionally, if the set is
contractive, the trajectory will ultimately
be bounded within a subset surrounding
the origin

RPI reduces to the Positive Invariance property in the absence of disturbances, and
the set contractivity guarantees the convergence of the system’s trajectories to the
origin [Many authors, 20th Century]
Robust Controlled Invariance (RCI) ensures the existence of a control law that will
make a set Robustly Positively Invariant
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Lemma (Extended Farkas’Lemma (EFL) [Hennet, 1995])
Consider two polyhedral sets, Pi = {x : Pix → ωi}, i = 1, 2, Pi ↑ ↓lpi

→n, and
positive vectors ωi ↑ ↓lpi . Then P1 ↔ P2 i!

P2x → ω2
↗x : P1x → ω1

↘≃ ⇐Q ⇒ 0 ; Q P1 = P2
Qω1 → ω2
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Figure 1: Set Inclusion
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Definition
For a given the discrete-time system xk+1 = (A + BKC)xk , the polyhedral set

L = {xk ↑ ↓n : Lxk → 1lr
} , L ↑ ↓lr →n , 1lr

=
[
1 . . . 1

]T

is Positively Invariant and ε-contractive, with ε ↑ [ 0 , 1), if and only if

Lxk+1 = L(A + BKC)xk → ε1lg

↗ Lxk → 1lg

↘≃ ⇐ H ⇒ 0 ; HL = L(A + BKC)
H1lg

→ ε1lg

Figure 2: Positive Invariance with ε-contractivity 7 / 40



Glimpse on Positive Invariance and Bilinear Programming

Brião et all. Explicit Computation of Stabilizing Feedback Control Gains

Using Polyhedral Lyapunov Functions. 2018 IEEE ICA-ACCA, Chile:

Min
H,K ,L,J,ω,ε

ε + ϑ ϖ

s.t. HL = L(A + BKC)
⇑H⇑↑ → ε , 0 → ε < 1
⇑K⇑↑ → ϖ , 0 → ϖ → ϖ

LU = In
(L, U) → (L, U) → (L, U)

Lyapunov function

v(xk) = →Lxk→→ , L ↑ ↓n↑n

with rank(L) = n

Lower and upper bounds on the unconstrained variables reduce the
optimization search space =≃ Bilinear Program can be solved using
nonlinear solvers, as e.g. KNITRO, which implements a multistart strategy to
find local minima under convergence [Brião et al.(2021)]
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Related results for LTI and LPV systems

1 Brião; Castelan; Ernesto; Camponogara. Output feedback design for

discrete-time constrained systems subject to persistent disturbances

via bilinear programming. Journal of the Franklin Institute, 2021.
Asymmetrical constraints and disturbance bounds, Static and Dynamic OF design

2 Lucia; Ernesto; Castelan. Set-theoretic output feedback control: A

bilinear programming approach. Automatica, 2023.

3 Ernesto, Castelan, Lucia. Control-rate Constrained Output Feedback

Design for LPV Systems subject to Bounded Disturbance. CBA 2024,
Brazil.
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Set-theoretic output feedback control: A bilinear

programming approach

Lucia, Walter; Ernesto, Jackson G. and Castelan, Eugênio B.
In: Automatica 2023
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Problem Formulation
Consider the LTI discrete-time system:

xk+1 = Axk + Buk + Bppk (1a)
yk = Cxk + Dϑϱk , (1b)

k ↑ N , xk ↑ ↓n, uk ↑ ↓m , yk ↑ ↓p, pk ↑ ↓s , ϱk ↑ ↓q

State and control constraints:

X = {xk : Xxk → 1lx
}, with X ↑ ↓lx →n, (2a)

U = {uk : Uuk → 1lu
}, with U ↑ ↓lu→m, (2b)

Bounded persistent disturbances:

P = {pk : Ppk → 1lp
}, with P ↑ ↓lp→s , (3a)

N = {ϱk : Nϱk → 1ln
}, with N ↑ ↓ln→r . (3b)
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Definition (Robust Control Invariant (RCI) [Borrelli et al., 2017])

A set Q ↔ X is said RCI for the LTI discrete system under state and control
constraints, also subject to the bounded persistent disturbances, if:

↗xk ↑ Q ⇓ ⇐uk ↑ U :
Axk + Buk + Bppk ↑ Q, ↗pk ↑ P

(4)

Definition (Robustly One-Step Controllable (ROSC)[Borrelli et al., 2017])

Consider the LTI discrete system under state and control constraints, also subject
to the bounded persistent disturbances, and a set Li ⇔ X . The set of states
ROSC to Li in one-step, namely Li+1 ↔ X , is defined as:

Li+1 :={ x ↑ X , ⇐u ↑ U : Ax + Bu + Bpp ↑ Li , ↗p ↑ P} (5)
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Output feedback function:
uk = f (yk) (6)

Problem

Find a stabilizing output feedback control function and an associated domain of
attraction LD ↔ X , 0n ↑ LD such that ↗ x0 ↑ LD and under the e!ect of the
bounded persistent disturbances, the following properties are met:

LD is a RCI set.
There exist a small RCI region L0 ↔ LD, 0n ↑ L0 where the state trajectory
is ultimately bounded in a finite and a-priori known numbers of steps.
The state and input constraints are fulfilled.
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— O"ine computations —

1: Build a small terminal RCI region
L0 and associated SoF gain K0;

2: Build a family of N̄ ROSC
sets {Li} and associated SoF
controller gains {Ki}, until the
set growth saturates;

3: Store {Ki , Li}N̄
i=0 for online use.
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RCI and ROSC sets construction using X

Defining
Ri = {xk ↑ ↓ : Rixk → 1ri

}, Ri ↑ ↓ri →n (7)

Li is described as

Li = {xk ↑ ↓ : Lixk → 1lr,i }, Li ↑ ↓lr,i →n, rank(Li) = n, (8)

where, by construction,

Li =
[

Ri

ςiX

]

and 1lr,i =
[

1ri

1lx

]

, (9)

with set complexity lr ,i = ri + lx > n and 0 < ςi → 1, ↗ i =≃ Li ↔ X .
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RCI Bilinear Optimization Problem

Min
!0(.) , ϖ0

ς0

s.t. H0L0 = L0(A + BK0C)
V0P = L0Bp

W0N = L0BK0Dϑ

H01lr,0 + V01lp
+ W01lω → 1lr,0

M0L0 = UK0C
Z0N = UK0Dϑ

M01lr,0 + Z01lϑ → 1lu

T0S = L0 , T01ls
→ 1lr,0

J0L0 = In , 0 < ς0 → 1

!0(.) → !0(.) → !̄0(.)

↔ L0 is RPI for the system controlled

with uk = K0yk :

(A+BK0C)L0 ↗BpP ↗BK0DωN ↘ L0

From EFL, [ H0 V0 W0 ] ≃ 0

↔ Control constraints admissibilty

K0CL0 ↗ K0DωN ↘ U

[ Z0 M0 ] ≃ 0

↔ S ↘ L0 for good conditioning

↔ rank(L) = n and L0 ↘ ω0X

⇐ To bound unconstrained variables
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ROSC Bilinear Optimization Problem - i = 1, . . . , N̄
Max

!i (.) , ϖi , εt

Ji =
n∑

t=1
ϖt

s.t. HiLi = Li↓1(A + BKiC)
ViP = Li↓1Bp

WiN = Li↓1BKiDϑ

Hi1lr
+ Vi1lp

+ Wi1lω → 1lr

MiLi = UKiC , ZiN = UKiDϑ

Mi1lr
+ Zi1lω → 1lu

TiLi↓1 = Li , ςi↓1 < ςi → 1
Ti1lr

→ 1lr
, Ti ⇒ 0

ϖtLivt , t = 1, . . . , t

JiLi = In , !i(.) → !i(.) → !i(.)

↔ Li ↘ X is ROSC to Li↓1 for the

system controlled with uk = Ki yk :

(A+BKi C)Li ↗BpP↗BKi DωN ↘ Li↓1

From EFL, [ Hi Vi Wi ] ≃ 0

↔ Control constraints admissibility:

Ki CLi ↗ Ki DωN Li ↘ U
[ Zi Mi ] ≃ 0

↔ Recursive sets inclusion: Li↓1 ↘ Li

⇐ To enlarge Li in given directions vt

↔ rank(L) = n and bounded variables

18 / 40



— Online switching rule —
(↗ k, x0 ↑ LD)

1: Given yk , compute ik using
Propositions 1 and 2 in [Lucia et
al., 2023]:

ik =
{

īk if rank(C) < n
ik if rank(C) = n

2: Compute and apply uk = Kik
yk .
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O!ine numerical complexity

Number of variables, equality and inequality constraints in the RCI and ROSC
optimization problems

RCI set L0
# of Variables mp + l0(n2 + l0 + lp + ln + lu + ls) + lu ln
# of Equalities l0(n2 + s + r) + lu(n + r) + n2

# of Inequalities l0 + lu + ls

ROSC sets Li

# of Variables mp + li↓1(n + l2
i

+ lp + ln) + lu(li + ln) + nli
# of Equalities li↓1(n + s + r) + lu(n + r) + lin + n2

# of Inequalities li↓1 + lu + li
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Example
Consider the Double Integrator system:

xk+1 =
[
1 1
0 1

]

xk +
[
2
1

]

uk +
[
1
1

]

pk (10a)

yk =
[
1 0

]
xk + ϱk , (10b)

subject to

↖1 → xk,1 → 1.25 , |xk,2| → 1 , ↖0.8 → uk → 1 , |pk | → 0.1 , |ϱk | → 0.1

which implies the matrices

XT =
[

0.8 0 ↖1 0
0 1 0 ↖1

]

, UT =
[

1 ↖1.25
]

PT =
[

10 ↖10
]T

, NT = [ 10 ↖10 ]
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i Ki Li Area Ji

0 [-0.7500] 0.3120 2.3466
1 [-0.7803] 0.4054 2.7227
2 [-0.8686] 0.7949 4.1941
3 [-0.8476] 1.7372 5.9305
4 [-0.6979] 2.5962 7.3990
5 [-0.6111] 3.0652 8.0587
6 [-0.6111] 3.1510 8.2741

Table 1: ST-OF, o!ine design. Figure 3: ST-OF: DoA for
(t̄ = 8, r = 4, ), and state trajectory for
x0 = [1.25, 0.047]T ↑ L6.
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Figure 4: DoA and state trajectory: ST-OF ↙ vs ” De Almeida and Dorea [2020]
(online optimization to find uk)

AreaL6 = 3.1510 vs AreaAD = 2.4837
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Control-rate Constrained Output Feedback Design for

LPV Systems Subject to Disturbances

Ernesto, Jackson G., Eugênio B. Castelan e Walter Lucia.
In: CBA 2024.
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Problem Formulation
LPV discrete-time system

xk+1 = A(ϑk)xk + B(ϑk)uk + Bp(ϑk)pk (11a)
yk = Cxk + Dωϱk (11b)

[
A(ϑk) B(ϑk) Bp(ϑk)

]
=

ε∑

i=1
ϑk,i

[
Ai Bi Bpi

]
, ϑk ↑ Simplex

State, control input and rate variation constraints:

X = {xk : Xxk → 1lx
}, X ↑ ↓lx →nx (12a)

U = {uk : Uuk → 1lu
}, U ↑ ↓lu→nu (12b)

Ud = {ςuk : Udςuk → 1ld
}, Ud ↑ ↓ld →nu , ςuk = uk+1 ↖ uk (12c)

Bounded persistent disturbances:

P = {pk : Ppk → 1lp
}, P ↑ ↓lp→np (13a)

N = {ϱk : Nϱk → 1ln
}, N ↑ ↓ln→nω (13b)
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Augmented state vector:

φk =
[
xT

k
uT

k

]T

↑ ↓nε , nϱ = nx + nu (14)

Augmented output vector:

↼k =
[
yT

k
uT

k
yT

k+1
]T

↑ ↓nϑ , nς = 2ny + nu (15)

Parameter-varying control increment input vector:

ςuk =
[
K (ϑk) K̄ (ϑk) K̂

]



yk

uk

yk+1



 (16)

[
K (ϑk) K̄ (ϑk) K̂

]
=

φ∑

i=1
ϑk,i

[
Ki K̄i K̂

]

Ki ↑ ↓nu→ny , K̄i ↑ ↓nu→nu , ↗i = 1, . . . , ↽, and K̂ ↑ ↓nu→ny
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Closed-loop augmented system:

φk+1 = Acl(ϑk)φk + Bcl

d (ϑk)dk (17)

[
Acl(ϑk) Bcl

d
(ϑk)

]
=

φ∑

i=1
ϑk,i

[
Acl

i
Bcl

d ,i

]

Acl

i =
[

Ai Bi

(KiC + K̂CAi) (K̄i + K̂CBi) + I

]

=
[

Ei

Ei + [0 I]

]

Bcl

d ,i =
[

Bp,i 0 0
K̂CBp,i KiDϑ K̂Dϑ

]

=
[
Fi

Fi

]

, dk =




pk

ϱk

ϱk+1



 ↑ ↓nd
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Augmented state constraints:

” = {φk : Xφk → 1lε
}, ” =

[
X 0
0 U

]

↑ ↓lε→nε , (18)

Augmented bounded disturbance:

# = {dk : Ddk → 1l”}, D =




P 0 0
0 N 0
0 0 N



 ↑ ↓l”→nd (19)

Definition
L ↑ ↓nε is a contractive robust positive invariant (RPI-)set of the LPV system,
with ultimately bounded (UB-)set L0 ↔ L, if for any φ0 =

[
xT

0 uT
0

]T

↑ L and

dk =
[
pT

k
ϱT

k
ϱT

k+1
]T

↑ #, the corresponding state trajectory remains inside L,
converge to L0 in a finite number of steps, and remains ultimately bounded within
L0, for all ϑk ↑ S.

29 / 40



Consider the polyhedral sets:

L = {φk : Lφk → 1lr
},

L0 = {φk : Lφk → ⇀1lr
}

L ↑ ↓lr →nε , rank(L) = nϱ,

set complexity lr > n, and 0 < ⇀ → 1

Problem

Given lr , find control gains (Ki , K̄i K̂ ) and a triplet (L, ε, ⇀), which defines a
large contractive RPI set L ↔ ” and a small UB-set L0 ↔ L, such that, for any
initial condition φ0 ↑ L, dk ↑ #, and for all ϑk ↑ S, the state, control, and
control-rate variation constraints, Ud = {Udςuk → 1ld

}, are fulfilled.
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Maximizing the size of L
Auxiliary inequalities:

ϖtL⇁t → 1lr
, t = 1, . . . , t̄ (20)

where ϖt ↑ ↓ are positive scaling factors associated to the a pre-defined set of t̄ directions
$ = {ϖt⇁t , t = 1, . . . , t̄} (21)

with ⇁t =
[
⇁T

x ,t ⇁T

u,t

]T , ⇁x ,t ↑ ↓nx and ⇁u,t ↑ ↓nu , which can be set as a variable ⇁u,t
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Bilinear Optimization Problem

Max
!(.)

t̄∑

t=1
ϖt ↖ ϑ⇀

s.t. HiL = LAcl

i
, Hi ⇒ 0

ViD = LBcl

d,i , Vi ⇒ 0
Hi1lr

+ Vi1l” → ε1lr

Hi⇀1lr
+ Vi1l” → (1 ↖ ε)⇀1lr

GL = X , G ⇒ 0
G1lr

→ 1lε

QiL = UdEi , Qi ⇒ 0
TiD = UdFi , Ti ⇒ 0
Qi1lr

+ Ti1l” → 1ld

JL = Inε , ϖtL⇁t → 1lr

!(.) → !(.) → !(.)

↔ RPI of L, with ε-contractivity

↔ RPI of the UB-set L0 ↘ L

↔ L ↘ !: state and control constraints

fulfilment

↔ Control increment admissibility

↔ rank(L) = nε and set enlargement

in given directions
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Example
LPV discrete-time system

xk+1 =
[
1 1
0 1

]

xk +
[
[2 , 2.25]

1

]

uk +
[
1
1

]

pk (22a)

yk =
[
1 0

]
xk + ϱk , (22b)

subject to

↖1 → xk,1 → 1.25 , |xk,2| → 1 , ↖0.8 → uk → 1 , |pk | → 0.1 , |ϱk | → 0.1

which implies the matrices

XT =
[

0.8 0 ↖1 0
0 1 0 ↖1

]

, UT =
[

1 ↖1.25
]

PT =
[

10 ↖10
]T

, NT = [ 10 ↖10 ]
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Table 2: Design with lr = 9, t̄ = 16, ϑ = 10, and ⇁u,t as a variable
ςuk bounds L Vol. Pr.Area ⇀

[
Ki K̄i K̂

]

without 2.4217 4.4656 0.6710
[
0.4431 ↖0.5420 ↖0.7376

]
[
0.4661 ↖0.4377 ↖0.7376

]

[↖0.9 , 0.6] 1.3584 4.4679 0.8864
[
0.4033 ↖0.5366 ↖0.6016

]
[
0.4033 ↖0.4317 ↖0.6016

]

[↖0.7 , 0.5] 1.1997 4.4028 0.9980
[
0.3743 ↖0.5575 ↖0.5551

]
[
0.3734 ↖0.4533 ↖0.5551

]

Figure 5: LPV, without bounds to ςu Figure 6: LPV, with ↖0.9 → ςu → 0.6
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Improved ωuk = K (εk)yk + K̄ (εk)uk + K̂ (εk+1)yk+1

• Improved ςuk = uk+1 ↖ uk implies

Acl(ϑk , ϑk+1) and Bcl(ϑk , ϑk+1)

• Modified L0 = {φk ; Lφk → ω},
with

ω = [ ⇀1 . . . ⇀lr ]T

• Modified objective function

Max
t̄∑

t=1

ϖt

t̄ ↖ ϑ
lr∑

i=1

ωi

lr

• Numerical complexity increases but
less conservative results are obtained
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Conclusion

Bilinear programming is an e"ective optimization tool to design output
feedback controllers for constrained LTI and LPV systems through polyhedral
set-invariance

Bilinear optimization problems were solved using the KNITRO solver -
Artelys. Free access from https://neos-server.org/neos/

Explicit computation of the control feedback matrices allows for specific
consideration of control gain structures and the design of reduced-order
dynamical controllers and decentralized control laws

Ongoing collaborations: time-delay and second-order systems, PID-like
control design for reference tracking and disturbance rejection

For dealing with the numerical complexity issue in higher-dimensional and
Complex Systems, one can explore the system and controller structures
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